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A strong magnetic field develops via bifurcation in a flow with accretion, as analytical and numerical
solutions of magnetohydrodynamic equations show. Examples are swirl-free and swirling jets, and thermal
convection near a point source of heat and gravity. The features of the resulting conical similarity magnetic
flows are analogous to those observed in cosmic jets.
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I. INTRODUCTION

Appearance of a magnetic field in a magnetic-free flow of
an electrically conducting fluid is an important manifestation
of symmetry breaking of both fundamental and practical in-
terest. Here we report how magnetic field emerges via bifur-
cation in conically similar solutions of magnetohydrody-
namic (MHD) equations.

Conical solutions describe a wide family of jet-like
flows where velocityv and magnetic fieldH have the
representation, hvr ,vu ,vfj=nr−1h−c8 ,−c /sin u ,G /sin uj,
hHr ,Hu ,Hfj=hnr−1hQ8 ,Q /sin u ,F /sin uj; hr ,u ,fj are
spherical coordinates,n is viscosity,h is a scale constant;c,
G, Q, and F are functions ofx=cosu only, and the prime
denotes differentiation.

Sincev and H are unbounded atr =0, conical solutions
describe practical jets only at some distances from the flow
source, as Fig. 1 illustrates. Similarity is absent in regions 1
(near nozzle 4) and 3 (near ambient body 5) but occurs in
region 2,r i , r , ro (ro/ r i @1 for strong jets).

This paper addresses jet-like flows in their similarity re-
gion (2 in Fig. 1) and shows thatH appears via bifurcation as
the strength of a magnetic-free flow exceeds a threshold. In
the primary flow,H develops due to instability and then satu-
rates to a steady magnitude. In the case where both the sec-
ondary MHD and primary magnetic-free flows are conical,
the analysis of bifurcation(involving full MHD equations) is
easier than the analysis of kinematic and nonlinear instabili-
ties. Therefore, it is convenient to first explore theH bifur-
cation and features of the resulting MHD flows—the subject
of this paper—and to postpone the instability study for fur-
ther research. Some comments concerning the instability are
in Sec. VI.

II. PROBLEM FORMULATION

Conical similarity is a feature of swirl-free(Landau-
Squire) and swirling(Long) jets, thermal convection near a
point source of heat and gravity[1], and many other
magnetic-free and MHD flows[2].

In the problem on convection near a point source of grav-
ity and heat(Fig. 2), g=−erd / r2, the representation for tem-

perature isT=T`+gr−1qsxd; d andg characterize the gravity
sgd and heat fluxsqd magnitudes, ander indicates the out-
ward radial direction. In addition, the Boussinesq approxima-
tion, r /r`=1−bsT−T`d is used;r is the fluid density andb
is the coefficient of thermal expansion. Conical similarity
reduces the MHD equations to

s1 − x2dc8 + 2xc−1/2c2 = F − Q2/2, s1ad

s1 − x2dF- = Racq + 2GG8 − 2FF8, s1bd

s1 − x2dG9 = cG8 − QF8, s1cd

s1 − x2dq8 = Pr cq, s1dd

s1 − x2dQ9 = BtscQ8 − c8Qd, s1ed

s1 − x2dF9 = BtfcF8 − QG8 + 2sc8F − Q8Gd

+ 2xscF − QGd/s1 − x2dg, s1fd

where Ra=bgd / sknd, Pr=n /k, and Bt=n /nm are the Ray-
leigh, Prandtl, and magnetic Prandtl numbers;k and nm are
the thermal and magnetic diffusivities. This reduction to or-
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dinary differential equations radically eases the analysis of
MHD bifurcations described below.

III. NECESSARY CONDITION FOR BIFURCATION TO
OCCUR

First, we show that magnetic bifurcation occurs in any
bipolar flow converging near the disk(2 in Fig. 2). For a
prescribed swirl-free flow, whereG;0 andc is known, the
linear bifurcation problem reduces tos1ed alone. The regu-
larity of v and H on thez axis impliescs1d=F8s1d=Qs1d
=0 and the symmetry conditions areQ8s0d=cs0d=0. In ad-
dition, we use the normalization,Q8s1d=−1.

Integratings1ed from x=0 to x=1 yields that

Q8s0d = −E
0

1

2Qdx− 2Bt E
0

1

cQ8dx. s2d

It is evident now that the bifurcation cannot occur in a di-
verging flow (wherec,0) because the conditionQ8s0d=0
cannot be satisfied forQ.0 and Q8,0 in 0,x,1 (the
problem is invariant with respect to the transformation,
Q→−Q).

In contrast, the bifurcation must occur in a converging
flow (wherec.0, Fig. 3). Indeed,Q=1−x and Q8s0d=−1
at Bt=0, while as Bt→`, Q8 becomes proportional toc8 so
that Q8s0d→c8s0d /c8s1d. Sincecs0d=cs1d=0 andc.0 in
0,x,1, c8s0d and c8s1d have opposite signs so that
Q8s0d.0 for Bt@1. Being a continuous function of Bt,
Q8s0d must change its sign as Bt increases from 0 to`.

Thus bifurcation ofH cannot occur in a diverging flow
and must occur in a converging flow. A few examples follow.

IV. DEVELOPMENT OF MAGNETIC JET IN A
VORTEX-ACCRETION FLOW

Consider a vortex-sink motion of the disk material, i.e.,
the boundary conditions,c=0, c8=−Rep, and G=Res at x
=0. The Reynolds numbers, Rep and Res, characterize the
strength of the meridional motion and swirl, respectively.

The flow converges to the axis near the disk and goes to
infinity along the axis as the inset in Fig. 3 depicts(for a
swirl-free flow). As −Rep increases, a strong bipolar jet de-
velops near the axis, while the flow near the disk remains
comparatively low speed.

The MHD problem reduces to Eq.(1) with (1–d) omitted
and Ra=0. The solution of the nonlinear MHD problem re-
veals that the magnetic field appears via a pitchfork super-
critical bifurcation, as the Res=0 curve in Fig. 3 shows
where the Alfven number, Al, is the magnetic-to-kinetic en-
ergy ratio on the disk. Solutions with Al1/2.0 and Al1/2,0
have just opposite directions of the magnetic field. The inset
in Fig. 3 illustrates that the generation of the magnetic field
occurs mostly near the disk where streamlines(solid) inter-
sect magnetic lines(dashed). Near the axis(i.e., inside the
jet), stream and magnetic lines are almost parallel.

For strong accretions−Rep→`d, the asymptotic solution,
Al=Bt, c=f1−x−exp s−BtRepxdg /Bt, and Q=1−x−f1
−exps−BtRepxdg /Bt, show that the jet is suppressed and the
kinetic energy of accretion transforms mainly into magnetic
energy.

The addition of swirl on the disk causes important fea-
tures: (i) hysteretic transitions between magnetic and
magnetic-free states,(ii ) a local maximum of circulation near
the axis, and(iii ) the development of both near-axis and
near-plane jets as the vortex accretion intensifies.

The Res=20 curve in Fig. 3 illustrates feature(i). The
bifurcation is now subcritical and there are three solutions
between the bifurcation Recr and fold sFd points: stable
magnetic-free flowS, unstableU, and stableSm MHD flows
(arrows indicate the evolution direction of disturbed states).
Transitions between statesS andSm as Rep varies are hyster-
etic. In stateS, increasing swirl reverses the flow near the
axis.

An important feature is that the magnetic field can avert
the swirl-induced flow reversal near axis. Another important
feature is that the magnetic field suppresses the swirl in the
bulk flow and generates the swirl near the axis[via the last
term in (1–c)].

As the vortex accretion intensifies at Res=Rep, a strong
swirling magnetic jet develops. Figure 4 illustrates this fea-

FIG. 2. Problem schematic: a point source(1) of gravity g and
heat fluxq, accretion disk(2), typical stream(3), and magnetic(4)
lines.

FIG. 3. Bifurcation of magnetic field in accretionsRes=0d and
vortex-accretionsRes=20d flows. The abscissa is a line of the plot
symmetry. Bt=0.4.
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ture (iii ). The swirl velocity near the axis is more than twice
vf prescribed on the disk. The Lorenz force drives this
strong swirl as theQF8 curve shows. Thus, the self-induced
magnetic field suppresses swirl near the disk and generates
swirl near the axis. Despite the strong swirl, no flow reversal
occurs and the jet is kept collimated by the magnetic field.

V. MAGNETIC BIFURCATION NEAR A POINT SOURCE
OF HEAT AND GRAVITY

While the accretion is prescribed in Sec. IV, now it is
driven by the buoyancy force(characterized by Ra).

For swirl-free states and Pr=0, system(1) reduces to(1–
a), (1–e), and(1–b) with q;1 andG=F;0. The boundary
conditions arec=F8=Q8=0 (symmetry) at x=0 andc=F
=F8=Q=0 (regularity) at x=1. Note thatc8s1ds=−Read can-
not be calculated from(1–a) (due to the 0/0 indeterminacy)
and must be found to satisfy the boundary conditions.

Figure 5 shows the development of a bipolar MHD con-
vection (Fig. 2). For Ra,24, the fluid is at rest state where
the pressure gradient balances the buoyancy force. At Ra
=24, bifurcation of magnetic-free thermal convection occurs
(bc in Fig. 5) [1]. As −Rep, increases along curvebcbm, a
high-speed near-axis jet develops and the dimensionless ve-

locity on the axis Rea→` while the near-disk flow remains
low speedsRep→−4.617d. Substituting the corresponding
asymptotic solution

c = xfs4 + Repdx2 − RepgReas1 − xd/f4 + Reas1 − xdg

in (1–e) and solving the eigenvalue problem, we find the
critical value of Bt=0.253, at which a magnetic field emerges
in the high-speed bipolar outflow.

The numerical solution of the nonlinear MHD problem at
Bt=0.253 (solid curves in Fig. 5) reveals a pitchfork bifur-
cationsbmd of magnetic field(curve Al1/2). In the MHD state,
Rea is bounded at finite Ra and the flow structure is similar
to that shown by the inset in Fig. 3.

As Ra increases, the induced magnetic fieldsQd grows
while stream functionscd remains bounded. We deduce the
asymptotic equations, as Ra→`, by neglecting the left-
hand-side terms in(1–a), i.e., takingQ2=2F, and rescaling:
R=U Ra/Bt andc=y/Bt. Then(1b) and (le) transform into
s1−x2dU-=y and y8=1/2yU8 /U+1/4s1−x2dfsU8 /Ud2

−2U9 /Ug.
The boundary conditions areU8=y=0 at x=0 and U

=U8=0 at x=1. This problem has a solution(in addition to
U=y;0) with Us0d=0.1042 andU=As1−xd2−Bs1−xd2+n+
high-order terms nearx=1 whereA=0.591,B=0.676, and
n=0.685.

According to this asymptotic solution, Rea and Q both
grow proportionally to Ra1/2 as Ra→`. Thus, even a strong
magnetic field does not suppress the buoyancy jet(in con-
trast to the accretion jet in Sec. IV).

VI. CONCLUDING REMARKS

Analytical and numerical solutions of the MHD equations
show that bifurcation of magnetic field is typical of conical
flows with accretion. It is proved that accretion is a necessary
condition for the magnetic bifurcation to occur(Sec. III).

When a converging motion of the disk material drives the
flow, the self-induced magnetic field eventually(as accretion
intensifies) suppresses the near-axis jet(Sec. IV). In contrast,
the jet velocity and magnetic field both increase with the
buoyancy force in thermal convection flows(Sec. V). Swirl
makes transitions hysteretic between the magnetic-free and

FIG. 4. The velocity(all components are scaled byn / rd and the
magnetic-source-of-swirlsQF8d distributions at Bt=0.4 and −Rep

=Res=60.

FIG. 5. Bifurcation of thermal convectionsbcd and magnetic
field sbmd near a point source of heat and gravity.

FIG. 6. Sketch of magnetic field development as the jet strength
increases.
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MHD states. The self-induced magnetic field focuses swirl
near the disk and jet and keeps the jet collimated even at a
strong swirl(Sec. IV).

These features resemble those observed in cosmic jets
[3,4]. Though the flows studied here are very different from
cosmic jets, the effects of accretion, swirl, and magnetic field
on the development of strong jets seem generic.

The appearance of magnetic field found here differs from
that in the classical dynamo theory(e.g., Ref. 5). A reason is
that H ,1/r here whileH decays significantly faster asr
→` in dynamo. Moreover, the bifurcations found here mani-
fest the appearance ofconicalH, while some backgroundH
may exist even before the bifurcation occurs, as Fig. 6 illus-
trates.

Suppose that magnetic field is prescribed and uniform at
r ù rb. Figure 6 sketches the radial distribution ofQd which

is the urH / shndu value on the disk for subcritical(curve 1),
critical (2), and supercritical(3) values of Ra. Accordingly,
Qd is less, equal, and larger than its prescribed background
value, Qdb. In case 3, the saturated value,Qds inside the
similarity region,r i , r , ro, is independent of and can sig-
nificantly exceedQdb.

The development shown in Fig. 6 agrees with the results
of the spatial instability study for steady disturbances[6] and
is analogous to the swirl development via bifurcation in elec-
trosprays[7]. Analysis of unsteady perturbations is a subject
for further research.

Therefore, even being different from dynamo, the mag-
netic bifurcation reported here is an important effect explain-
ing an abrupt and dramatic growth ofH in the similarity
region due to increasing inflow of magnetic energy, as the
flow strength exceeds its critical value.
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